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Timing Errors

Systematic and correctable timing errors were introduced by software bugs in various ver-
sions of the Quanterra data logger. Such timing errors remained undocumented at various
networks (e.g., Geofon) but were generally fixed by software upgrades before the turn of the
millennium. This problem was significant for the LH channels, and all our data have been ap-
propriately corrected. Many stations aso have periods of erratic timing which are likely dueto
loss of an external timing standard. Such data have been removed from further analysis.

Technical Aspectsof the Inversion

Because the short-period P waves originate from the nucleation point on the fault surface,
whereas |ong-period waves average over the rupture process, we use independent hypocentral
corrections for the 5,938 events for which we have long-period travel times, and the 86,499
events for which we have short-period times.

The velocity structure is represented through linear interpolation between a set of flexibly
spaced nodes that form a three-dimensional, tetrahedral, Delaunay mesh [1-3]. The node spac-
ing increases with the expected resolving length of our data, and ranges from about 200 kmin
the upper mantle to about 600 km in the lower mantle. The grid consists of 19,279 nodes. To-
gether with the hypocentral correctionswe have atotal of 389,027 unknowns, which we seek to
resolve with 1,584,764 observations. The influence of data errors upon the tomographic image
is kept under control by regularization: the source parameters are damped to give a posteriori
shiftscomparableto their apriori error estimates; the Euclidean norm of thevelocity inversionis
only dlightly damped; the inversion is mostly regularized by implementing a three-dimensional
L aplacian smoothing [4].

To avoid domination of the solution by the much larger short-period data set, we weight
the least-squares system such that the reduced chi-squared X2, (x* divided by the number
of data) is about equal for each data set separately. The preferred model satisfies the short-
period data with x%, = 1.1, whereas the long period data are fitted with x2, = 1.2. In test
inversions of the data sets separately, we noted a tendency for the long-period data to produce
higher anomalies by as much as 50%; the two independently inverted models correlate well,
with a depth-dependent correlation coefficient around 0.6. The x2,, values obtained for the
combined inversion show that the amplitude difference is not due to a pronounced difference in
theinterna consistency of the delay times. This difference may indicate that even the |SC data
are subject to wavefront healing, or that we overestimate the errors in the ISC data set, or that
there are as yet unknown biases in the data. It is noteworthy, however, that the plumes that are
visible in the low-frequency inversion are also recognizable (though often weaker) in the high-
frequency inversion, indicating that it isthe full combination of al improvements(culling of the
highest quality short-period data and remeasurement of the long-period data, in addition to the
implementation of finite-frequency sensitivity kernels and an irregular model parameterization)
that have enabled us to image deep mantle plumes. We combine the long-period and short-



period travel timesin asingle inversion to exploit the difference in sensitivities of the two data
Sets.

The Resolution of Plumes

To test the resolution, we generated ‘ synthetic’ data sets for Earth models with cylindrical
Gaussian anomalies dvp /vp = (0vp/Up)cens €xp(—7%/w?) with radii w = 100, 200, 300 and
400 km; centered at alarge number of observed plumes, and extending to depths of 650, 1000,
..., 2800 km (asin Figs. 2, 3 and S1). Synthetic traveltime residuals were computed using
finite-frequency sensitivity kernels for the long-period data and using standard ray theory for
the short-period data. The highest velocity perturbation (6ve /vp)..,, iNthe center of the cylinder
is defined by following the pattern for temperature derivative dvp /dT of P-wave velocity in the
mantle as a function of depth given by Karato [5, Fig. 1]. Assuming a temperature contrast
AT = 300° K at the center of the plume, the maximum velocity perturbation is —1% below
1000 km depth, —1.2% between 600 and 1000 km depth, and —2.4% above 600 km depth (Fig.
S1). After adding noise with the same assigned standard deviations as in the actual data, these
synthetic data were inverted using the same regularization, and the images were inspected for
agreement with the input image used to generate them. We consider a plume to be ‘resolved’
if the recovered synthetic image has a contrast |dvp /vp| > 0.3%, i.e., well above the level of
ubiquitous noisy fluctuations in the actual images. This threshold corresponds to a temperature
contrast of the order of 100 K in the lower mantle [5]. In addition to testing the influence of ray
coverage, the test also reveals when our interpolation scheme affects the image.
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Figure S1. Three-dimensional views of the plumes that seem to originate in the mid-mantle.
Plotting format, including change in depth scaling at 1000 km isidentical to that of Figs. 2 and
3.
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Figure S2: Sections of the velocity model at different depths (300, 650, 1000, 1450, 1900, 2350
and 2800 km) beneath Ascension and St. Helena. The sections are the same as in Fig. 2 but
projected on aflat planeto help the visualization of the velocity anomaly.
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Figure S3: Sections of the velocity model beneath Azores, Canary and Cape Verde (Fig. 2).
Plotting format isthe same asin Fig. S2.
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Figure $4: Sections of the velocity model beneath Crozet (Fig. 2). Plotting format is the same
asinFig. S2.
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Figure S5: Sections of the velocity model beneath Easter and Juan Fernandez (Fig. 2). Plotting
format isthe sameasin Fig. S2.
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Figure S6: Sections of the velocity model beneath Hawaii (Fig. 2). Plotting format is the same
asinFig. S2.
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Figure S7: Sections of the velocity model beneath Kerguelen (Fig. 2). Plotting format is the
sameasinFig. S2.
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Figure S8: Sections of the velocity model beneath Samoa and Cook Islands (Fig. 2). Plotting
format isthe sameasin Fig. S2.
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Figure S9: Sections of the velocity model beneath Tahiti and Cook Islands (Fig. 2). Plotting
format isthe sameasin Fig. S2.
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Figure S10: Sections of the velocity model beneath Bowie, Juan de Fuca and Yellowstone (Fig.
3). Plotting format isthe same asin Fig. S2.
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Figure S11: Sections of the velocity model beneath Coral Sea and Solomon (Fig. 3). Plotting
format isthe sameasin Fig. S2.
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Figure S12: Sections of the velocity model beneath Eastern Australia (Fig. 3). Plotting format
isthesameasin Fig. S2.
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Figure S13: Sections of the velocity model beneath Etna and Eifel (Fig. 3). Plotting format is

thesameasin Fig. S2.
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Figure S14: Sections of the velocity model beneath Galapagos (Fig. 3). Plotting format is the
sameasin Fig. S2.
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Figure S15: Sections of the velocity model beneath Iceland (Fig. 3). Plotting format isthe same
asinFig. S2.
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Figure S16: Sections of the velocity model beneath Cocos-Keeling and South of Java (Fig. 3).
Plotting format isthe same asin Fig. S2.
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Figure S17: To estimate the width and depth reliability of the low-velocity anomalies found in
the velocity model, we use different plume widths (radii of 100, 200, 300 and 400 km, respec-
tively) for plumes originating at different depthsin the mantle: 650, 1000, 1450, 1900, 2350 and
2800 km. The radial velocity perturbation in the synthetic plumeis a three-dimensional Gaus-
sian centered on the axis of the plume; the anomaly amplitude varies with depth in the manner
predicted by Karato [5] for a temperature contrast of AT = 300 K at the center. In thisfig-
ure, we present three-dimensional views of the synthetic plumes used in the resolution tests of
Figs. 2, 3and S1-S16. Surface geography corresponds to the synthetic plumes beneath I celand,;
plumes at other locations have the same geometry; z indicates the depth of the source regionin
km, and w is the radius in km. We only show the results obtained with plumes originating at
650 km depth with 400 km radius, and plumes originating at the bottom of the mantle with radii
200, 300 and 400 km, respectively. These resolution tests have been used to determine whether
the shallow and mid-mantle plumes are the result of lack of resolution at depth and whether the
mid-mantle and deep plume are due to leakage from the upper mantle.
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Figure S18: Reconstructed synthetic plumes whose input depth and radius are 650 km and 400
km, respectively. Plumes are listed alphabetically. Labels on the surface are listed in Table 1
and indicates published locations of the hotspots.
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Figure S19: Reconstructed synthetic plumes whose input depth and radius were 2800 km and
200 km, respectively.
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Figure S20: Same as Fig. S19, but for synthetic plumes with radius of 300 km.
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Figure S21: Same as Fig. S20 and S21, but for synthetic plumes with 400 km radius.
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